Product Description

Turbo molecular vacuum pump unit

Introduction:
Molecular pump automatic unit includes automatic control system, according to the procedure to control the start and stop of each pump and valve, to achieve pre-pumping, front-stage, high valve control. Suitable for a variety of use environments. Users can customize valves, main pumps, front pumps and special functions as needed.

Molecular pumps can not work independently, in the purchase of molecular pumps at the same time, need to support the corresponding front pumps, valves, cooling systems and other related accessories. In order to facilitate the user to buy and use, we have introduced a molecular pump unit.

Thanks to the modular design principle, molecular pump units have many combination possibilities, optional with our various molecular pumps, and supporting the front pump, vacuum meter, cooling system, pre-pump valve system and automatic control system. As a result, molecular pump units are perfectly adapted to application requirements in the field of high vacuum and ultra-high vacuum.

Vacuum units also offer customized services to individually design special structures to meet your specific application needs in research and development, accelerators, analytical and surface physics, as well as vacuum process technology and general vacuum applications.

Introduction:
Pumping speed: 4000L/s

Ultimate pressure: 5*10-7Pa

Max pre-pressure: 100Pa

Motor speed: 24000r/min

Monolithic rotor

Resistance to atmospheric shock

Can remove dusty gas

Can work continuously under the condition of high vacuum and low vacuum

High temperature resistance

Easy to maintain

 

Technique data Unit Turbo-H400/4000-FF
Pumping speed L/s 4000
Ultimate pressure Pa 5×10-7
Max pre-pressure Pa 100
For N2 " 108
For H2 " 1×104
Resistant atmosphere pressure or not " yes
Motor speed r/min 24000
Start time min <10
Volume of lubricant oil ml NO
Installation ways " vertical
Cooling ways " Water cooling
Cooling water consumption L/h 90
Cooling water temperature ºC <24
Baking temperature ºC 100±10
Air inlet diameter mm DN400
Air outlet diameter mm KF40

Application areas:

Semiconductor production

Electronics gun exhaust, ionization source exhaust

FPD manufacturing

Surface treatment, surface modification

Manufacture of various electronic components

Lamp production, optical components production

Accelerating device, radiation facility, nuclear CHINAMFG research

Heat treatment

Research and development
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil
Structure: Turbomolecular Vacuum Pumps
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: Vacuum
Work Function: Mainsuction Pump
Working Conditions: Dry
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Furnaces?

Yes, vacuum pumps can be used for vacuum furnaces. Here's a detailed explanation:

Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.

Here are some key points regarding the use of vacuum pumps in vacuum furnaces:

1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.

2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.

3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.

4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.

5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.

6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.

7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.

8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.

Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.

vacuum pump

How Do Vacuum Pumps Contribute to Energy Savings?

Vacuum pumps play a significant role in energy savings in various industries and applications. Here's a detailed explanation:

Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:

1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.

2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.

3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.

4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.

5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.

6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump's efficiency and prevents energy waste.

In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here's a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

- Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

- Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

- Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

- Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

- Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

- Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

- Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

- Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

- Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

- Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

- Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

- Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

- Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

- Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China Custom Electronics Gun Exhaust Turbo Molecular Vacuum Pump   supplier China Custom Electronics Gun Exhaust Turbo Molecular Vacuum Pump   supplier
editor by Dream 2024-05-16