Product Description

Paper Pulp Medium Consistency Pulp Pump

Company Profile

HUATAO OEM Kinds Of Centrifugal Processing Pulp Pump for Paper Machine to deliver the pulp and water.
And the Pulp Pumps as the key equipment during the pulp stock preparation.
Single-stage centrifugal pump with full-open impeller design.
Suitable for conveying slurry or clean water with a pulp concentration of 0-6%.
The scope has a pump, base frame for placing the pump, and standard motor, with screw coupling, coupling protection cover, and anchor bolts.

SGZ SK Type Centrifugal Pump

SGZ SK Centrifugal Pump 

SGZ SK Centrifugal Pump high-efficiency non-clogging non-leakage pulp pump is a new generation of pulp pump products.
It has obvious advantages such as high efficiency, good anti-clogging performance, no leakage during operation, and convenient installation and maintenance. It is widely used in the conveying of pulp media in paper and pulp enterprises.

Centrifugal Pump Structural features:
1. The pump has a rear door structure, and it is not necessary to disassemble the pipeline during maintenance.
2. The pressure design of the inlet and outlet flanges of the pump is 1.6MPa.
3. The impeller adopts a three-blade (or six-blade), open impeller, high efficiency and no need for axial thrust compensation, easy maintenance and low chance of blockage. The impeller adopts lost wax precision casting and is checked for dynamic balance.
4. The pump shaft is supported by a combination of oil-lubricated, heavy-duty, abrasion-resistant, imported cylindrical roller bearings and radial thrust ball bearings (angular contact ball bearings). Cylindrical roller bearings are mounted on the pump end and radial thrust ball bearings are mounted face to face on the rotating end
5. Shaft seals mainly include a pumping ring plus single-end mechanical seal, packing seal, single-end mechanical seal, tandem mechanical seal, double-end mechanical seal, combination seal of pumping ring and single-end mechanical seal, and dynamic seal. , the user can choose according to the requirements and actual working conditions
6. There are 4 kinds of materials: cast iron, cast steel, ordinary stainless steel, and duplex stainless steel.

Low Pulse Pulp Pump

 

Low Pulse Pulp Pump

SJ-type sizing pump, also known as a low-pulse pump, is designed for the disadvantages of large flow and low-lift mixed-flow pumps widely used in general papermaking enterprises, such as unstable pulp and inconvenient disassembly and assembly. It is an ideal replacement product, with high efficiency, stable pulp, long service life, and easy maintenance (the bearing is balanced at both ends of the pump body). (The pump casing is opened in the middle, and maintenance can be done after opening the cover.) It is suitable for matching the pulp supply system of medium and high-speed paper machines. The operating temperature is below 80 °C and the concentration is below 1%.

The pump looks from the coupling to the pump, the pump rotates counterclockwise, the slurry inlet of the pump is on the right, and the slurry outlet is on the left. If you need to change the position of the slurry inlet and outlet, you need to submit it in advance and confirm with the drawing.
 

Water Ring Vacuum Pump

Watering Ring Vacuum Pump 

The water ring vacuum pump (referred to as a water ring pump) is a rough vacuum pump, the ultimate vacuum it can obtain is 2000~4000Pa, and the vacuum degree of the unit formed with the vacuum pump can reach 1~600Pa. The water ring pump can also be used as a compressor, which is called a water ring compressor, which is a low-pressure compressor with a pressure range of 1~2×10^5 Pa gauge pressure.

The water ring vacuum pump is equipped with an eccentric rotor with fixed blades, which throws water (liquid) to the stator wall, and the water (liquid) forms a liquid ring concentric with the stator, and the liquid ring and the rotor blades together form a variable volume. The positive displacement vacuum pump. In many processes of industrial production, such as vacuum filtration, vacuum water diversion, vacuum feeding, vacuum evaporation, vacuum concentration, vacuum resuspension, and vacuum degassing, water ring pumps are widely used. Mainly used in a coal mine (gas pumping), chemical, pharmaceutical, mining, paper, food, beer, building materials, plastics, metallurgy, electrical appliances, and other industries.

Water ring vacuum pump advantage:
1. The structure is simple, the manufacturing precision is not high, and it is easy to process.
2. The structure is compact, the speed of the pump is high, and it can generally be directly connected with the motor, without the need for a deceleration device. Therefore, with a small structure size, a large exhaust volume can be obtained, and the floor space is also small.
3. The compressed gas is basically isothermal, that is, the temperature change of the compressed gas is small.
4. Since there is no metal friction surface in the pump cavity, there is no need to lubricate the pump, and the wear is very small. The sealing between the rotating part and the fixed part can be done directly by the water seal.
5. The suction is uniform, the work is stable and reliable, the operation is simple, and the maintenance is convenient.

Double Flow Centrifugal Pump

Double Flow Centrifugal Pump

S-type and SH-type centrifugal pumps are single-stage double-suction, horizontal split centrifugal pumps, which are used to transport clean water and liquids with similar physical and chemical properties to water. The maximum temperature of the liquid does not exceed 80 ºC, which is suitable for paper mills, mines, cities, power station water supply, and drainage, farmland irrigation and drainage, and various water conservancy projects.

Model S centrifugal pumps look towards the pump from the coupling and the pump rotates clockwise. The water inlet of the pump is on the right and the water outlet is on the left. If you need to change the position of the import and export, you need to explain it before production.
SH type centrifugal pump looks at the pump from the coupling, and the water pump rotates counterclockwise. The water inlet of the pump is on the left and the water outlet is on the right. If you need to change the position of the import and export, you need to explain it before production.

The bearings of the centrifugal pump are located at both ends of the pump body, and the force is balanced during operation and has a long service life. The pump body is open in the middle, and it can be repaired by opening the cover, which is very convenient.

Slurry Pump

Slurry Pump, Middle Consistency Slurry Pump

Double-channel non-clogging pulp pump is a new type of energy-saving pulp pump. After practical use, it has the advantages of high efficiency, no leakage or less leakage, good anti-clogging performance, stable operation, high reliability, compact structure, and long service life. This series of pumps has been innovated and improved according to the characteristics of papermaking and pulping processes and has achieved the best application of fluid engineering and fluid mechanics.

The semi-open or fully open impeller is adopted, the front clearance between the wear plate and the impeller is adjustable, the shaft seal is mainly mechanical seal, and high-precision bearings (D-grade accuracy), and high-quality shaft materials are selected.
It can be widely used in light industry, papermaking and other industries where the temperature is lower than 110ºC and the concentration is lower than 6%. It can also be used in industrial and urban water supply, drainage, and other occasions. Special specifications can be designed individually.

 

 

Our Advantages

1. Fully open, three-blade impeller, large flow channel, strong performance without clogging.
2. Wear-resistant linings at the suction and discharge ends of the impeller are used to protect the eddy current casing.
3. The new protective cover design makes it easier to disassemble.
4. Brand new chassis design, stronger and more convenient for coupling adjustment.

Our Professional Team

 

 

 

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Supply Accessories, Video Instruction
Warranty: 12 Months
Working Pressure: High Pressure Pump
Influent Type of Impeller: Double-Suction Pump
Position of Pump Shaft: Horizontal Pump
Pump Casing Combined: Horizontal Split Pumps
Customization:
Available

|

vacuum pump

What Is the Impact of Altitude on Vacuum Pump Performance?

The performance of vacuum pumps can be influenced by the altitude at which they are operated. Here's a detailed explanation:

Altitude refers to the elevation or height above sea level. As the altitude increases, the atmospheric pressure decreases. This decrease in atmospheric pressure can have several effects on the performance of vacuum pumps:

1. Reduced Suction Capacity: Vacuum pumps rely on the pressure differential between the suction side and the discharge side to create a vacuum. At higher altitudes, where the atmospheric pressure is lower, the pressure differential available for the pump to work against is reduced. This can result in a decrease in the suction capacity of the vacuum pump, meaning it may not be able to achieve the same level of vacuum as it would at lower altitudes.

2. Lower Ultimate Vacuum Level: The ultimate vacuum level, which represents the lowest pressure that a vacuum pump can achieve, is also affected by altitude. As the atmospheric pressure decreases with increasing altitude, the ultimate vacuum level that can be attained by a vacuum pump is limited. The pump may struggle to reach the same level of vacuum as it would at sea level or lower altitudes.

3. Pumping Speed: Pumping speed is a measure of how quickly a vacuum pump can remove gases from a system. At higher altitudes, the reduced atmospheric pressure can lead to a decrease in pumping speed. This means that the vacuum pump may take longer to evacuate a chamber or system to the desired vacuum level.

4. Increased Power Consumption: To compensate for the decreased pressure differential and achieve the desired vacuum level, a vacuum pump operating at higher altitudes may require higher power consumption. The pump needs to work harder to overcome the lower atmospheric pressure and maintain the necessary suction capacity. This increased power consumption can impact energy efficiency and operating costs.

5. Efficiency and Performance Variations: Different types of vacuum pumps may exhibit varying degrees of sensitivity to altitude. Oil-sealed rotary vane pumps, for example, may experience more significant performance variations compared to dry pumps or other pump technologies. The design and operating principles of the vacuum pump can influence its ability to maintain performance at higher altitudes.

It's important to note that vacuum pump manufacturers typically provide specifications and performance curves for their pumps based on standardized conditions, often at or near sea level. When operating a vacuum pump at higher altitudes, it is advisable to consult the manufacturer's guidelines and consider any altitude-related limitations or adjustments that may be necessary.

In summary, the altitude at which a vacuum pump operates can have an impact on its performance. The reduced atmospheric pressure at higher altitudes can result in decreased suction capacity, lower ultimate vacuum levels, reduced pumping speed, and potentially increased power consumption. Understanding these effects is crucial for selecting and operating vacuum pumps effectively in different altitude environments.

vacuum pump

How Do Vacuum Pumps Impact the Quality of 3D Printing?

Vacuum pumps play a significant role in improving the quality and performance of 3D printing processes. Here's a detailed explanation:

3D printing, also known as additive manufacturing, is a process of creating three-dimensional objects by depositing successive layers of material. Vacuum pumps are utilized in various aspects of 3D printing to enhance the overall quality, accuracy, and reliability of printed parts. Here are some key ways in which vacuum pumps impact 3D printing:

1. Material Handling and Filtration: Vacuum pumps are used in 3D printing systems to handle and control the flow of materials. They create the necessary suction force to transport powdered materials, such as polymers or metal powders, from storage containers to the printing chamber. Vacuum systems also assist in filtering and removing unwanted particles or impurities from the material, ensuring the purity and consistency of the feedstock. This helps to prevent clogging or contamination issues during the printing process.

2. Build Plate Adhesion: Proper adhesion of the printed object to the build plate is crucial for achieving dimensional accuracy and preventing warping or detachment during the printing process. Vacuum pumps are employed to create a vacuum environment or suction force that securely holds the build plate and ensures firm adhesion between the first layer of the printed object and the build surface. This promotes stability and minimizes the risk of layer shifting or deformation during the printing process.

3. Material Drying: Many 3D printing materials, such as filament or powdered polymers, can absorb moisture from the surrounding environment. Moisture-contaminated materials can lead to poor print quality, reduced mechanical properties, or defects in the printed parts. Vacuum pumps with integrated drying capabilities can be employed to create a low-pressure environment, effectively removing moisture from the materials before they are used in the printing process. This ensures the dryness and quality of the materials, resulting in improved print outcomes.

4. Resin Handling in Stereolithography (SLA): In SLA 3D printing, a liquid resin is selectively cured using light sources to create the desired object. Vacuum pumps are utilized to facilitate the resin handling process. They can be employed to degas or remove air bubbles from the liquid resin, ensuring a smooth and bubble-free flow during material dispensing. This helps to prevent defects and imperfections caused by trapped air or bubbles in the final printed part.

5. Enclosure Pressure Control: Some 3D printing processes, such as selective laser sintering (SLS) or binder jetting, require the printing chamber to be maintained at a specific pressure or controlled atmosphere. Vacuum pumps are used to create a controlled low-pressure or vacuum environment within the printing chamber, enabling precise pressure regulation and maintaining the desired conditions for optimal printing results. This control over the printing environment helps to prevent oxidation, improve material flow, and enhance the quality and consistency of printed parts.

6. Post-Processing and Cleaning: Vacuum pumps can also aid in post-processing steps and cleaning of 3D printed parts. For instance, in processes like support material removal or surface finishing, vacuum systems can assist in the removal of residual support structures or excess powder from printed objects. They can also be employed in vacuum-based cleaning methods, such as vapor smoothing, to achieve smoother surface finishes and enhance the aesthetics of the printed parts.

7. System Maintenance and Filtration: Vacuum pumps used in 3D printing systems require regular maintenance and proper filtration to ensure their efficient and reliable operation. Effective filtration systems within the vacuum pumps help to remove any contaminants or particles generated during printing, preventing their circulation and potential deposition on the printed parts. This helps to maintain the cleanliness of the printing environment and minimize the risk of defects or impurities in the final printed objects.

In summary, vacuum pumps have a significant impact on the quality of 3D printing. They contribute to material handling and filtration, build plate adhesion, material drying, resin handling in SLA, enclosure pressure control, post-processing and cleaning, as well as system maintenance and filtration. By utilizing vacuum pumps in these critical areas, 3D printing processes can achieve improved accuracy, dimensional stability, material quality, and overall print quality.

vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here's a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China Hot selling Direct Coupling Horizontal Double Flow Centrifugal Pump Pumps Water Ring Vacuum Pump   supplier China Hot selling Direct Coupling Horizontal Double Flow Centrifugal Pump Pumps Water Ring Vacuum Pump   supplier
editor by CX 2024-02-15